
CENG3430 Rapid Prototyping of Digital Systems

Lecture 03: Architectural Styles

of VHDL

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Recall: What we have done in Lab01

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 2

entity AND_Gate is

port (A: in STD_LOGIC;

B: in STD_LOGIC;

C : out STD_LOGIC);

end AND_Gate;

architecture AND_arch of

AND_Gate is

begin

C <= A and B;

end AND_arch;

Hardware Simulation
architecture Behavioral of AND_TEST is

component AND_Gate

port(A, B: in STD_LOGIC;

C: out STD_LOGIC);

end component;

signal ai, bi: STD_LOGIC;

signal ci: STD_LOGIC;

begin

AND_Gate port map (A => ai, B => bi,

C => ci);

process

begin

ai <= '0'; bi <= '0';

wait for 100 ns;

ai <= '1'; bi <= '0';

wait for 100 ns;

ai <= '0'; bi <= '1';

wait for 100 ns;

ai <= '1'; bi <= '1';

wait;

end process;

end Behavioral;

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 3

• Structural Design: Like a circuit but describe it by text.

• Design Steps:

Step 1: Create entities

Step 2: Create components from entities

Step 3: Use “port map” to relate the components

Component B

Structural Design: Use “port map”

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 4

Component C

Connected by port map in architecture body

Component A

Step 1: Create Entities

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 5

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity and2 is

4 port (a,b: in STD_LOGIC;

5 c: out STD_LOGIC);

6 end and2;

7 architecture and2_arch of and2 is

8 begin

9 c <= a and b;

10 end and2_arch;

11 ---------------------------------

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;

14 entity or2 is

15 port (a,b: in STD_LOGIC;

16 c: out STD_LOGIC);

17 end or2;

18 architecture or2_arch of or2 is

19 begin

20 c <= a or b;

21 end or2_arch;

a

b
c

AND2

a

b
c

OR2

Step 2: Create Components

component and2 --create components--

port (a,b: in std_logic; c: out std_logic);

end component;

component or2 --create components--

port (a,b: in std_logic; c: out std_logic);

end component;

signal con1_signal: std_logic; --internal signal--

-- (optional) --

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 6

a

b
c

AND2

a

b
c

OR2

Step 3: Connect Components

begin

label1: and2 port map (in1, in2, inter_sig);

label2: or2 port map (inter_sig, in3, out1);

end test_arch;

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 7

in1

in3
out1in2

inter_sig

label1 & label 2 are line labels

Lines can be interchanged for the same circuit design.

Step 2

Step 1

Step 1

Put Together: A Running Example

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 8

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity and2 is

4 port (a,b: in STD_LOGIC;

5 c: out STD_LOGIC);

6 end and2;

7 architecture and2_arch of and2 is

8 begin

9 c <= a and b;

10 end and2_arch;

11 ---------------------------------

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;

14 entity or2 is

15 port (a,b: in STD_LOGIC;

16 c: out STD_LOGIC);

17 end or2;

18 architecture or2_arch of or2 is

19 begin

20 c <= a or b;

21 end or2_arch;

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 --

4 entity test is

5 port (in1: in STD_LOGIC; in2: in STD_LOGIC;

6 in3: in STD_LOGIC;

7 out1: out STD_LOGIC);

8 end test;

9 architecture test_arch of test is

10 component and2 --create component

11 port (a,b: in std_logic; c: out std_logic);

12 end component ;

13 component or2 --create component

14 port (a,b: in std_logic; c: out std_logic);

15 end component ;

16 signal inter_sig: std_logic;

17 begin

18 label1: and2 port map (in1, in2, inter_sig);

19 label2: or2 port map (inter_sig, in3, out1);

20 end test_arch;

Step 3

Class Exercise 3.1

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 9

• Draw the schematic diagram for the following lines:

i label_u0: and2 port map (a, c, x);

ii label_u1: or2 port map (b, x, y);

• When will lines i and ii be executed?

Answer: ___________________________________

• Complete lines i and ii if the circuit is as follows:

i label_u0: _____________

ii label_u1: _____________

Student ID:

Name:

Date:

a

c
yb

x

Another Running Example

entity test_andand2 is

port (in1: in STD_LOGIC;

in2: in STD_LOGIC;

in3: in STD_LOGIC;

out1: out STD_LOGIC

);

end test_andand2;

architecture test_andand2_arch of test_andand2 is

component and2

port (a, b: in std_logic; c: out std_logic);

end component ;

signal inter_sig: std_logic;

begin

label1: and2 port map (in1, in2, inter_sig);

label2: and2 port map (inter_sig, in3, out1);

end test_andand2_arch;

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 11

No need to create the

component for the same

entity for several times

But you can use

the component

multiple times

in1

in3

inter_sig

out1in2

Class Exercise 3.2

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 12

• Draw the schematic diagram and fill in the truth table

for the following the half-adder:

Student ID:

Name:

Date:

library IEEE; --Vivado 14.4 ok

use IEEE.STD_LOGIC_1164.ALL;

entity half_adder is -- another example

port (x: in bit; y: in bit;

sum: out bit; carry: out bit);

end half_adder;

architecture arch of half_adder is

component xor2

port(a,b: in bit; c: out bit);

end component;

component and2

port(a,b: in bit; c: out bit);

end component;

begin

label1: xor2 port map (x, y, sum);

label2: and2 port map (x, y, carry);

end arch;

input output

x y carry sum

carry

x
sum

y

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 14

• Data flow design method uses concurrent statements

instead of “port map”.

– Concurrent statements can be interchanged freely.

– There’s no “execution order” for concurrent statements.

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 15

1 library IEEE; %Vivado2014.4 tested ok

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity eqb_comp4 is

4 port (a, b: in std_logic_vector(3 downto 0);

5 equals, bigger: out std_logic);

6 end eqb_comp4;

7 architecture dataflow4 of eqb_comp4 is

8 begin

9 equals <= '1' when (a = b) else '0'; --concurrent

10 bigger <= '1' when (a > b) else '0'; --concurrent

11 end dataflow4;

Data Flow: Use Concurrent Statements

Lines 9 & 10 will be executed whenever

signal a or b (or both) changes.

Class Exercise 3.3

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 16

Student ID:

Name:

Date:

1 library IEEE; --Vivado 14.4

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity abc is

4 port (a,b,c: in std_logic;

5 y: out std_logic);

6 end abc;

7 architecture abc_arch of abc is

8 signal x : std_logic;

9 begin

10 x <= a nor b;

11 y <= x and c;

12 end abc_arch;

• Draw the schematic circuit of this code:

Answer:

Structural vs. Data Flow

Structural

(port map)

Data Flow

(concurrent statements)

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 18

architecture test_arch of test is

signal x : std_logic;

begin

x <= a nor b;

y <= x and c;

end test_arch;

architecture test_arch of test is

component and2

port (a,b: in std_logic;

c: out std_logic);

end component ;

component nor2

port (a,b: in std_logic;

c: out std_logic);

end component ;

signal x: std_logic;

begin

label1: nor2 port map (a, b, x);

label2: and2 port map (x, c, y);

end test_arch;

a

c
yb

x

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 19

Behavioral Design: Use “process”

• Behavioral design is sequential

– Just like a sequential program

• The keyword is “process”:

– The main character is “process (sensitivity list)”.

– A process is executed when one (or more) of the signals

in the sensitivity list changes.

– Statements inside a process are sequentially executed.

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 20

Behavioral Design Example

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 21

library IEEE; --vivado14.4

use IEEE.STD_LOGIC_1164.ALL;

entity eqcomp4 is port(

port (a, b: in std_logic;_vector(3 downto 0)

equals: out std_logic);

end eqcomp4;

architecture behavioral of eqcomp4 is

begin

process(a, b)

begin

if a = b then

equals <= '1';

else

equals <= '0';

end if;

end process;

end behavioral;

 Behavioral Design: Sequential in a “process”

Sequential Execution:

Statements inside a process are

sequentially executed.

Recall: What we have done in Lab01

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 22

entity AND_Gate is

port (A: in STD_LOGIC;

B: in STD_LOGIC;

C : out STD_LOGIC);

end AND_Gate;

architecture AND_arch of

AND_Gate is

begin

C <= A and B;

end AND_arch;

architecture Behavioral of AND_TEST is

component AND_Gate

port(A, B: in STD_LOGIC;

C: out STD_LOGIC);

end component;

signal ai, bi: STD_LOGIC;

signal ci: STD_LOGIC;

begin

AND_Gate port map (A => ai, B => bi,

C => ci);

process

begin

ai <= '0'; bi <= '0';

wait for 100 ns;

ai <= '1'; bi <= '0';

wait for 100 ns;

ai <= '0'; bi <= '1';

wait for 100 ns;

ai <= '1'; bi <= '1';

wait;

end process;

end Behavioral;

Hardware Simulation

1) It is legal to have a

process WITHOUT a

sensitivity list.

2) Such process MUST have

some kind of time-delay or

wait (Lec05).

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 23

Concurrent vs. Sequential Statements

• Concurrent Statement

– Statements inside the architecture body can be executed
concurrently, except statements enclosed by a process.

– Every statement will be executed once whenever any

signal in the statement changes.

• Sequential Statement

– Statements within a process are executed sequentially,

and the result is obtained when the process is complete.

– process(sensitivity list): When one or more

signals in the sensitivity list change state, the process

executes once.

– A process can be treated as one concurrent statement in

the architecture body.

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 24

Concurrent with Sequential

1 library IEEE; --vivado14.4 ok

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity conc_ex is

4 port (in1,in2,in3: in std_logic;

5 out1,out2 : inout std_logic);

6 end conc_ex;

7 architecture for_ex_arch of conc_ex is

8 begin

9 process (in1, in2)

10 begin

11 out1 <= in1 and in2;

12 end process;

13 out2 <= out1 and in3; -- concurrent statement

14 end for_ex_arch;

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 25

The process (9-12) and

line 13 are concurrent

and can be interchanged!

in1

in3

out2
in2

out1

Class Exercise 3.4

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 26

Student ID:

Name:

Date:

• State concurrent and sequential statements:

1 architecture for_ex_arch of for_ex is

2 begin

3 outx1 < = out1 and in3;

4 process (in1, in2)

5 begin

6 out1 <= in1 and in2;

7 end process;

8 outx2 < = out1 or in3;

9 end for_ex_arch;

Class Exercise 3.5

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 28

Student ID:

Name:

Date:

• Use structural, data flow, and behavioral designs to

implement the following circuit in VHDL:

in1

in3

out2

in2

out1

in4

out3
S

DF
B

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 30

Signal Assignment (<=)

• Signal Assignment (<=)

– Global to the entity

– Concurrent execution

– Do not be confused with the operator <= (equal or smaller)

• For example: A1 <= B1 or C1

– A1 must be declared outside a process.

– A1 represents an internal wire or an input/output pin in port.

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 31

C1

B1
A1

Variable Assignment (:=)

• Variable Assignment (:=)

– Local to a process

– Sequential execution

– Constant/signal/variable initialization also uses “:=”

• For example: A2 := B2 or C2

– A2 must be declared inside a process.

– A2 must be a variable.

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 32

C2

B2
A2

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop
–

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 33

Design Constructions

• Concurrent: Statements that can be stand-alone

1) when-else

2) with-select-when

• Sequential: Statements inside the process

1) if-then-else

2) case-when

3) for-in-to-loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 34

Sequential – INSIDE process

Concurrent: OUTSIDE process

Concurrent 1) when-else

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 35

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 out1 <= '1' when in1 = '1' and in2 = '1' else '0';

10 end when_ex_arch;

in1

in2
out1

Condition based

when condition is true then out1 <= ‘1’

otherwise then out1 <= ‘0’

Class Exercise 3.6

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 36

Student ID:

Name:

Date:

• Fill in line 9 using when-else:

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 __

10 end when_ex_arch;

in1

in2
out1

Class Exercise 3.7

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 38

Student ID:

Name:

Date:

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity tri_ex is

4 port (in1, enable: in std_logic;

5 ut1: out std_logic);

6 end tri_ex;

7 architecture tri_ex_arch of tri_ex is

8 begin

9 ___

11 end tri_ex_arch;

• Fill in the empty line to realize tri-state logic:

in1 out1

enable in1 enable out1

0 0 Z

1 0 Z

0 1 0

1 1 1

Concurrent 2) with-select-when

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 with in1 select

10 out1 <= in2 when '1',

11 '0' when others;

12 end when_ex_arch;
CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 40

 when in1='1' then out1 <= in2

when in1 = other cases

then out1 <= ‘0’

Signal based

in1

in2
out1

Class Exercise 3.8

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 41

Student ID:

Name:

Date:

• Fill in lines 9~11 using with-select-when:

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 __

10 __

11 __

12 end when_ex_arch;

in1

in2
out1

when-else vs. with-select-when

• Concurrent 1) when-else: Condition based

out1 <= '1' when in1 = '1' and in2 = '1' else '0';

• Concurrent 2) when-else: Signal based

with in1 select

out1 <= in2 when '1',

'0' when others;

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 43

in1

in2
out1

 when in1='1' then out1 <= in2

when in1 = other cases

then out1 <= ‘0’

when in1=‘1’ and in2=‘1’ then out1 <= ‘1’, otherwise out <= ‘0’

Outline

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 44

Sequential 1) if-then-else

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 45

entity if_ex is

port(in1,in2: in std_logic;

out1: out std_logic);

end if_ex;

architecture if_ex_arch of if_ex is

begin

process(b)

begin

if in1 = '1' and in2 = '1' then

out1 <= '1';

else

out1 <= '0';

end if;

end process;

end if_ex_arch;

if (cond) then

statement;

end if;

if (cond) then

statement1;

else

statement2;

end if;

if (cond1) then

statement1;

elsif (cond2) then

statement2;

elsif …

…

else

statementn;

end if;

in1

in2
out1

Sequential 2) case-when

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 46

All cases must be present:
Use others to complete all cases

“=>” means “implies” not “bigger”

"00"|"11" means case “00” or “11”

entity test_case is

port (in1, in2: in std_logic;

out1,out2: out std_logic);

end test_case;

architecture case_arch of test_case is

signal b : std_logic_vector (1 downto 0);

begin

process (b)

begin

case b is

when "00"|"11" => out1 <= '0';

out2 <= '1';

when others => out1 <= '1';

out2 <= '0';

end case;

end process;

b <= in1 & in2;

end case_arch;

Class Exercise 3.9

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 47

Student ID:

Name:

Date:

• List line numbers of

concurrent

statements:

Answer:

• Fill in the truth table:

entity test_case is

port (in1, in2: in std_logic;

out1,out2: out std_logic);

end test_case;

architecture case_arch of test_case is

signal b : std_logic_vector (1 downto 0);

begin

process (b)

begin

case b is

when "00"|"11" => out1 <= '0';

out2 <= '1';

when others => out1 <= '1';

out2 <= '0';

end case;

end process;

b <= in1 & in2;

end case_arch;

b(1) b(0) out1 out2

0 0

0 1

1 0

1 1

Concurrent

when-else

b <= "1000" when a = "00" else

"0100" when a = "01" else

"0010" when a = "10" else

"0001" when a = "11";

with-select-when

with a select

b <= "1000" when "00",

"0100" when "01",

"0010" when "10",

"0001" when "11";

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 49

Concurrent vs. Sequential Constructions

Sequential

if-then-else

if a = "00" then b <= "1000"

elsif a = "01" then b <= "1000"

elsif a = "10" then b <= "1000"

else b <= "1000"

end if;

case-when

case a is

when "00" => b <= "1000";

when "01" => b <= "0100";

when "10" => b <= "0010";

when others => b <= "0001";

end case;

for-loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 50

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity for_ex is

port (in1: in std_logic_vector(3 downto 0);

out1: out std_logic_vector(3 downto 0));

end for_ex;

architecture for_ex_arch of for_ex is

begin

process (in1)

begin

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

end process;

end for_ex_arch;

in1(3:0) out1(3:0)

while-loopprocess (in1)

variable i: integer := 0;

begin

while i < 3 loop

out1(i) <= not in1(i);

end loop;

end process;

Sequential 3) loop (1/2)

Sequential 3) loop (2/2)

• for-loop

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

– The loop parameter (e.g.,
i) does NOT need to be

declared.

• It is implicitly declared within

the loop.

• It may not be modified within

the loop (e.g., i := i-1;).

– for-loop is supported for

synthesis.

• while-loop

variable i: integer:=0;

…

while i < 3 loop

out1(i) <= not in1(i);

end loop;

– The while loop repeats if

the condition tested is true.

• The condition is tested

before each iteration.

– while-loop is supported

by some logic synthesis

tools, with certain

restrictions.

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 51

https://www.ics.uci.edu/~jmoorkan/vhdlref/for_loop.html

https://www.ics.uci.edu/~jmoorkan/vhdlref/while.html

Class Exercise 3.10

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 52

Student ID:

Name:

Date:

architecture arch1 of ex1

is

begin

process (in1)

begin

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

end process;

end for_ex_arch;

• Rewrite arch1 without a process()

architecture arch1 of ex1

is

begin

end for_ex_arch;

Summary

• Architectural Design Methods

– Structural Design (“port map”)

– Data Flow Design (concurrent statements)

– Behavioral Design (“process”)

• Concurrent vs. Sequential Statements

• Revisit: Signal (<=) and Variable (:=) Assignments

• Design Constructions

– Concurrent: when-else, with-select-when

– Sequential: if-then-else, case-when, loop

CENG3430 Lec03: Architectural Styles of VHDL (v1.1) 54

